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E�cient preconditioning of the discrete adjoint equations for
the incompressible Navier–Stokes equations
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SUMMARY

Preconditioning of the discrete adjoint equations is closely related to preconditioning the linear systems
arising in the Newton linearization of the discretized �ow equations. We investigate the use of an
optimal preconditioner for both problems on the example of a �nite element discretization of the steady
state incompressible Navier–Stokes equations. It is demonstrated that complications arising from the
use of a zero mean pressure condition in the problem formulation can be overcome by modifying the
preconditioner suitably. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Shape optimization and parameter sensitivity analysis are areas of major interest in CFD
due to their importance in the design process for a wide range of CFD applications. E�cient
methods for computing the derivatives with respect to problem parameters have been devel-
oped and applied in a number of applications, including the solution of �uid �ow problems.
One particular example of this type is the discrete adjoint method (e.g. Reference [1]). In
order to compute the sensitivity of a performance function I(’;F) to a shape parameter
vector F a system of the form

J T =
@I
@’

(1)

must be solved, where J is the Jacobian J := @R=@’ of the residual R=R(’;F) of the discrete
�ow equations with respect to the �ow solution ’ (comprising the relevant �ow variables).
Both R and I are functions of ’ and the shape parameter vector F. One particular advantage
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of the discrete adjoint method is that the Jacobian matrix J is readily available if the �ow
solver uses the Newton method to linearize the �ow equations R=0.
A further advantage of the discrete adjoint method is that, since the transpose J T of a

matrix J has the same eigenvalues, once an e�cient preconditioner for J is known, it should
be possible to reuse this for the adjoint problem. In the case of the �nite element discretization
of the steady state incompressible Navier–Stokes equations e�cient preconditioning techniques
for the linear systems arising in the application of the Picard iteration and the Newton method
have been developed, e.g. in References [2, 3], respectively. The preconditioner described in
these papers is optimal in the sense that under certain assumptions the eigenvalues of the
preconditioned system are bounded asymptotically independent of the mesh size parameter h.
We brie�y review some of the most important issues associated with the application of these
preconditioning techniques in Section 2.
Despite the fact that the spectra of J and J T are identical, it turns out that simply taking the

transpose of the preconditioner used for J is not generally su�cient when solving the adjoint
problem. In Section 3 we illustrate this and propose a modi�cation for the preconditioner of
the adjoint system which restores the optimal behaviour. Numerical results are presented in
Section 4.

2. PRECONDITIONING THE LINEAR SYSTEMS IN A FINITE
ELEMENT FLOW SOLVER

A �nite element discretization of the Navier–Stokes equations can be formulated as follows
(see for example Reference [4]):
Find u∈ (Vh)d and p∈Q0

h which ful�l

a(u; v) + c(u; u; v) + b(v; p) = 0 ∀v∈ (Vh0)d

b(u; q) = 0 ∀q∈Q0
h

and the appropriate Dirichlet boundary conditions for the velocity u, where d is the spatial
dimension of the domain � (d=2 throughout this paper), Vh and Qh are the �nite element
function spaces of velocity components and pressure, respectively,

a(u; v) :=
1
Re

∫
�

∇u :∇v d�; b(u; p) :=
∫
�
p(∇ · u) d�; c(u; v; w) :=

∫
�
u · ∇v · w d�;

Q0
h :=

{
q∈Qh :

∫
�
q d�=0

}
; Vh0 := {v∈Vh : v=0 on @�}

(2)

and Re is the Reynolds number.
Two commonly used iterative solution techniques (linearizations) for this nonlinear problem

are described by

a(uk+1; v) + �c(uk+1; uk ; v) + c(uk ; uk+1; v) + b(v; pk+1) = �c(uk ; uk ; v) ∀v∈ (Vh0)d

b(uk+1; q) = 0 ∀q∈Q0
h
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where uk ; pk denote the kth iterate and �∈ {0; 1} de�nes the linearization method: �=1
for the Newton method, and �=0 for Picard iteration (referred to as simple iteration in
Reference [4]). Whilst the Newton method uses an exact linearization of the discrete equations,
the Picard iteration can be regarded as using an inexact linearization. The linear systems of
the Picard method are easier to solve, but this comes at the cost of slower convergence
of the nonlinear system. However, since Picard iteration is globally convergent it can be used
to provide a good initial iterate for the Newton method, which is not globally convergent.
If we set aside consideration of boundary conditions and the zero mean pressure condition

(ZMPC), the system arising from the linearized discrete �ow equations can be written as

J̃’=

[
F BT

B 0

] [
u

p

]
=

[
f

0

]

where the F block arises from the a(·; ·)+c(·; ·; ·) terms, with B and BT from the b(·; ·) terms.
In Reference [2], a preconditioner is proposed and analysed for this type of problem, based
upon the systems that arise from Picard iteration. The equivalent left preconditioner is, in the
factorized form

C−1
L =

[
I 0

0 M−1
p FpA−1

p

] [
I 0

−BT I

] [
F−1 0

0 I

]
(3)

which utilizes the discretization of a pressure space advection–di�usion operator Fp (the pres-
sure space analog to F), the inverse of the pressure space mass matrix Mp, and the inverse
of a pressure space Laplacian Ap, along with the B block and the inverse of the F block
of J̃ . In the implementation of the preconditioner the actions of the di�erent inverse matrices
are replaced by (inexact) solves which can be performed very e�ciently using defect correc-
tion Multigrid as preconditioner for a Krylov solver (for F and Ap, e.g. Reference [5]) and
conjugate gradients (CG) for Mp, for example.
In Reference [3], this preconditioner and its analysis were extended to the systems arising

from the Newton linearization, where the Fp part becomes an advection–di�usion–reaction
operator, in analogy to the change of the F block of the system. The resulting preconditioner
performs similarly well, but only up to a certain problem dependent Reynolds number. For
larger Reynolds numbers the performance degrades quickly, as our numerical results con-
�rm (see Section 4). Since application of the discrete adjoint method for sensitivity analysis
requires the (exact) Jacobian, we restrict our considerations to the Newton linearization for
the remainder of this paper. Further we restrict to the regime in which this preconditioner
performs well.
One way to handle the boundary conditions and the ZMPC is to modify the assembled

equation system to incorporate them implicitly, reducing the dimension of the system. In
the case of the ZMPC however this would destroy the sparsity of the B and BT blocks of
the system, which is not desirable. Therefore, in our implementation we adopt an idea from
Reference [6]. The core of this idea is that if we wish to solve a given system J̃’= b
which is singular on its own, but becomes non-singular by restricting the solution to a given
linear subspace, then the modi�ed system can be expressed as PTJ̃ P’=PTb, where P is a
projector onto the subspace. In Reference [6] a modi�cation to the preconditioned CG method
is proposed, which allows solution of the system PTJ̃ P’=PTb operating in the unrestricted
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space but applying the projector at appropriate points to enforce that the solution iterates are in
the desired subspace in which the problem is well de�ned. These modi�cations are analysed
and it is concluded that if the left preconditioner C−1

L is replaced by PC−1
L PT exactly the

desired e�ect is achieved.
We have adopted the use of this idea in the preconditioned GMRES solver, using a

projector P which assures that the ZMPC and the Dirichlet boundary conditions are ful-
�lled in each step. In practise it means that we start GMRES with an iterate which ful�ls
the boundary condition and the ZMPC, and all search directions in GMRES are projected to
zero on the boundary and the mean pressure is subtracted (application of P). The application
of PT can be interpreted as making sure that the residual vector to which the preconditioner
C−1
L is applied conforms with the restrictions.

3. PRECONDITIONING THE DISCRETE ADJOINT

As the discrete adjoint Equation (1) utilizes the transpose J T of the Jacobian, each unknown  i

of the adjoint system corresponds to one of the discrete �ow equations. This implies that the
adjoint variables corresponding to the ZMPC equation and the boundary condition equations
are unknowns as well, therefore these equations have to be formulated explicitly and ap-
plication of the projection method used in the previous section is not immediately possible.
Suppose the discrete �ow variables are ordered as

’=[u1;1; : : : ; uNint ;1; : : : ; uNint+Nbc ;1; u1;2; : : : ; uNint ;2; : : : ; uNint+Nbc ;2; p1; : : : ; pNp ]
T

where ui; j denotes the jth velocity component at the ith node of the mesh, pi the pressure at
the ith pressure node, Nint the number of internal nodes, Nbc the number of boundary nodes
and Np the number of pressure nodes. If we explicitly incorporate the velocity boundary
conditions and the ZMPC into the �ow equations then the Jacobian has the block structure

J =




F1;1int F1;1bc F1;2int F1;2bc BT1int
0 I1bc 0 0 0

F2;1int F2;1bc F2;2int F2;2bc BT2int
0 0 0 I2bc 0

B̃1int B̃1bc B̃2int B̃2bc 0
0 0 0 0 wT




(4)

where index 1int (resp. 2int) denotes the interior nodes with the �rst (resp. second) velocity
component and 1bc (resp. 2bc) denotes the boundary nodes with the �rst (resp. second)
velocity component. Again, the F blocks (F1;∗ and F2;∗) arise from linearizing the x and y
components of the a(u; v) + c(u; u; v) terms in the momentum equations, the BT blocks from
the b(v; p) term, the B blocks from the incompressibility condition b(u; q)=0 and the B̃∗
denote B∗ with the last row dropped (to be replaced by the ZMPC). The identity matrices
I1bc and I2bc enforce the velocity boundary conditions and w is a column vector such that
wTp=0 gives the ZMPC. It can be proved that this system is equivalent to a system where
the ZMPC is enforced using a Lagrange multiplier approach.
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In order to de�ne a left preconditioner for J T we can use the transpose of a right precon-
ditioner C−1

R for J since

(JC−1
R )

T = (C−1
R )

TJ T

In Section 2 we used the projection idea to apply (3) in the presence of boundary conditions
and the ZMPC. For the adjoint problem this is not immediately possible, but some equivalent
action must still be taken. Looking at the last block row of the adjoint equations,

B1int 1int + B2int 2int + w w= rp

it is apparent that the adjoint variable  w corresponding to the ZMPC a�ects the residual
components of the whole pressure space vector. We are able to reduce this in�uence of the
weight vector w by introducing an additional step into the preconditioner which updates  w

such that the square of the residual of the last block row of the adjoint equation becomes
minimal, which leads to

 w =
wT(rp − B1int 1int − B2int 2int)

wTw

Additional care should be taken to ensure that the other parts of the preconditioner do not
alter  w in the preceding steps.
Our numerical results for this modi�cation of the adjoint preconditioner show the desired

performance, i.e. iteration numbers independent of h, see Section 4. Hence we propose the
following algorithm as a preconditioner for the discrete adjoint equations.
To apply y= C̃

−1
r to a vector r=[ru1int ; ru1bc; ru2int ; ru2bc; rp]

T:

1. Solve 

FT1;1int FT2;1int
FT1;1bc IT1bc FT2;1bc
FT1;2int FT2;2int
FT1;2bc FT2;2bc IT2bc






yu1int

yu1bc

yu2int

yu2bc


 =



ru1int
ru1bc
ru2int
ru2bc




2. De�ne a temporary vector z1 = rp − B1intyu1int − B2intyu2int.
3. Calculate yw=(wTz1)=(wTw).
4. Update z1 := z1 − yww.
5. Solve Mpz2 = z1.
6. Multiply z1 :=FTp z2.
7. Solve Apz2 = z1.
8. The resulting vector is y=[yu1int ; yu1bc; yu2int ; yu2bc; yp; yw]T, where yp is z2 with the last
component discarded.

4. NUMERICAL RESULTS

To support our research we have written a �nite element solver for the steady state in-
compressible Navier–Stokes equations in two dimensions. The solver works on unstructured
triangular meshes, using the Taylor–Hood (P2=P1) element pair.
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Figure 1. (a) GMRES iterations for Jacobian and adjoint system; and (b) overall time to solution.

A key element in making these preconditioning techniques competitive is an e�cient solver
for the F block, the advection–di�usion–reaction operator. In the case of Picard iteration this
reduces to an advection–di�usion operator for which GMRES preconditioned by a defect cor-
rection multigrid scheme utilizing stabilized coarse grid discretizations works very well, giving
optimal (h-independent) performance, see Reference [7]. This technique also seems to work
well for the advection–di�usion–reaction operator which arises in the Newton linearization,
although only up to moderate Reynolds number.
We have tested these techniques on a variety of test problems including �ow in a channel

with a bump, �ow around an obstacle and a lid driven cavity. Here, we present some of the
results for the driven cavity, as they are representative of the other problems also.
To demonstrate the behaviour of the Fp preconditioner for di�erent Reynolds number

regimes, the lines marked with diamonds in Figure 1(a) show the iteration numbers required
for a relative residual reduction of 10−5 in the �rst Newton step on the speci�ed mesh,
plotted against the Reynolds number. The di�erent lines represent di�erent re�nement levels,
for which the number of nodes N is given in the legend. These lines are very close to each
other, indicating essentially mesh independent iteration counts, whilst the iteration counts grow
with Re. These results have been obtained with all inner solves set to a 10−6 relative improve-
ment in residual norm. Note that there is a trade-o� between the number of outer iterations
and the number of iterations taken for the inner parts of the preconditioner. Whilst for low
Reynolds number rather inaccurate inner solves perform well, at larger Reynolds number a
higher accuracy for the inner solves is desirable in terms of the overall cost of the solution.
The lines marked with stars in Figure 1(a) show the iteration counts required for a relative

residual reduction by 10−5 for the adjoint equation, with the modi�ed preconditioner. Note
that only one line is visible for levels 6, 7, and 8 because the iteration counts coincide exactly.
We conclude that the number of iterations for the adjoint problem compares well with the
number of iterations for the �rst Newton step.
Finally Figure 1(b) plots the overall time to solution against the number of nodes in the

mesh, for four di�erent Reynolds number regimes. The overall time to solution includes the
computation of the �ow solution, performance criterion (drag at the bottom of the cavity)
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and gradient of the performance criterion with respect to the node positions at the bottom
of the domain. The results con�rm that the proposed preconditioning technique can be used
to implement a near optimal �ow and sensitivity calculation, in the sense that, for given
Reynolds number, the overall time to solution is almost linear in the number of nodes.
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